Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh

Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 6 vom: 28., Seite 863-7
1. Verfasser: Park, M (VerfasserIn)
Weitere Verfasser: Miller, D J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Letter
Beschreibung
Zusammenfassung:Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden states. We generalize this HMM-based (1-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRFs base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques
Beschreibung:Date Completed 28.06.2010
Date Revised 12.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/83.766862