Improved image decoding over noisy channels using minimum mean-squared estimation and a Markov mesh
Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 8(1999), 6 vom: 28., Seite 863-7 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
1999
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Letter |
Zusammenfassung: | Joint source-channel (JSC) decoding based on residual source redundancy is a technique for providing channel robustness to quantized data. Previous work assumed a model equivalent to viewing the encoder/noisy channel tandem as a discrete hidden Markov model (HMM) with transmitted indices the hidden states. We generalize this HMM-based (1-D) approach for images, using the more powerful hidden Markov mesh random field (HMMRF) model. While previous state estimation methods for HMMRFs base estimates on only a causal subset of the observed data, our new method uses both causal and anticausal subsets. For JSC-based image decoding, the new method provides significant benefits over several competing techniques |
---|---|
Beschreibung: | Date Completed 28.06.2010 Date Revised 12.02.2008 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/83.766862 |