The local minima-free condition of feedforward neural networks for outer-supervised learning

In this paper, the local minima-free conditions of the outer-supervised feedforward neural networks (FNN) based on batch-style learning are studied by means of the embedded subspace method. It is proven that only if the rendition that the number of the hidden neurons is not less than that of the tra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 28(1998), 3 vom: 15., Seite 477-80
1. Verfasser: Huang, D S (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177438118
003 DE-627
005 20250209045200.0
007 cr uuu---uuuuu
008 231223s1998 xx |||||o 00| ||eng c
024 7 |a 10.1109/3477.678658  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177438118 
035 |a (NLM)18255966 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, D S  |e verfasserin  |4 aut 
245 1 4 |a The local minima-free condition of feedforward neural networks for outer-supervised learning 
264 1 |c 1998 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, the local minima-free conditions of the outer-supervised feedforward neural networks (FNN) based on batch-style learning are studied by means of the embedded subspace method. It is proven that only if the rendition that the number of the hidden neurons is not less than that of the training samples, which is sufficient but not necessary, is satisfied, the network will necessarily converge to the global minima with null cost, and that the condition that the range space of the outer-supervised signal matrix is included in the range space of the hidden output matrix Is sufficient and necessary condition for the local minima-free in the error surface. In addition, under the condition of the number of the hidden neurons being less than that of the training samples and greater than the number of the output neurons, it is demonstrated that there will also only exist the global minima with null cost in the error surface if the first layer weights are adequately selected 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 28(1998), 3 vom: 15., Seite 477-80  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:28  |g year:1998  |g number:3  |g day:15  |g pages:477-80 
856 4 0 |u http://dx.doi.org/10.1109/3477.678658  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 1998  |e 3  |b 15  |h 477-80