The local minima-free condition of feedforward neural networks for outer-supervised learning

In this paper, the local minima-free conditions of the outer-supervised feedforward neural networks (FNN) based on batch-style learning are studied by means of the embedded subspace method. It is proven that only if the rendition that the number of the hidden neurons is not less than that of the tra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 28(1998), 3 vom: 15., Seite 477-80
1. Verfasser: Huang, D S (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, the local minima-free conditions of the outer-supervised feedforward neural networks (FNN) based on batch-style learning are studied by means of the embedded subspace method. It is proven that only if the rendition that the number of the hidden neurons is not less than that of the training samples, which is sufficient but not necessary, is satisfied, the network will necessarily converge to the global minima with null cost, and that the condition that the range space of the outer-supervised signal matrix is included in the range space of the hidden output matrix Is sufficient and necessary condition for the local minima-free in the error surface. In addition, under the condition of the number of the hidden neurons being less than that of the training samples and greater than the number of the output neurons, it is demonstrated that there will also only exist the global minima with null cost in the error surface if the first layer weights are adequately selected
Beschreibung:Date Completed 02.10.2012
Date Revised 07.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0492
DOI:10.1109/3477.678658