Least-squares image resizing using finite differences

We present an optimal spline-based algorithm for the enlargement or reduction of digital images with arbitrary (noninteger) scaling factors. This projection-based approach can be realized thanks to a new finite difference method that allows the computation of inner products with analysis functions t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 9 vom: 15., Seite 1365-78
1. Verfasser: Muñoz, A (VerfasserIn)
Weitere Verfasser: Blu, T, Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177434015
003 DE-627
005 20231223150216.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.941860  |2 doi 
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177434015 
035 |a (NLM)18255551 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Muñoz, A  |e verfasserin  |4 aut 
245 1 0 |a Least-squares image resizing using finite differences 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present an optimal spline-based algorithm for the enlargement or reduction of digital images with arbitrary (noninteger) scaling factors. This projection-based approach can be realized thanks to a new finite difference method that allows the computation of inner products with analysis functions that are B-splines of any degree n. A noteworthy property of the algorithm is that the computational complexity per pixel does not depend on the scaling factor a. For a given choice of basis functions, the results of our method are consistently better than those of the standard interpolation procedure; the present scheme achieves a reduction of artifacts such as aliasing and blocking and a significant improvement of the signal-to-noise ratio. The method can be generalized to include other classes of piecewise polynomial functions, expressed as linear combinations of B-splines and their derivatives 
650 4 |a Journal Article 
700 1 |a Blu, T  |e verfasserin  |4 aut 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 10(2001), 9 vom: 15., Seite 1365-78  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:10  |g year:2001  |g number:9  |g day:15  |g pages:1365-78 
856 4 0 |u http://dx.doi.org/10.1109/83.941860  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 10  |j 2001  |e 9  |b 15  |h 1365-78