Least-squares image resizing using finite differences

We present an optimal spline-based algorithm for the enlargement or reduction of digital images with arbitrary (noninteger) scaling factors. This projection-based approach can be realized thanks to a new finite difference method that allows the computation of inner products with analysis functions t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 10(2001), 9 vom: 15., Seite 1365-78
1. Verfasser: Muñoz, A (VerfasserIn)
Weitere Verfasser: Blu, T, Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present an optimal spline-based algorithm for the enlargement or reduction of digital images with arbitrary (noninteger) scaling factors. This projection-based approach can be realized thanks to a new finite difference method that allows the computation of inner products with analysis functions that are B-splines of any degree n. A noteworthy property of the algorithm is that the computational complexity per pixel does not depend on the scaling factor a. For a given choice of basis functions, the results of our method are consistently better than those of the standard interpolation procedure; the present scheme achieves a reduction of artifacts such as aliasing and blocking and a significant improvement of the signal-to-noise ratio. The method can be generalized to include other classes of piecewise polynomial functions, expressed as linear combinations of B-splines and their derivatives
Beschreibung:Date Completed 14.12.2009
Date Revised 07.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/83.941860