Multiscale methods for the segmentation and reconstruction of signals and images

This paper addresses the problem of both segmenting and reconstructing a noisy signal or image. The work is motivated by large problems arising in certain scientific applications, such as medical imaging. Two objectives for a segmentation and denoising algorithm are laid out: it should be computatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 3 vom: 15., Seite 456-68
1. Verfasser: Schneider, M K (VerfasserIn)
Weitere Verfasser: Fieguth, P W, Karl, W C, Willsky, A S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177432691
003 DE-627
005 20250209045111.0
007 cr uuu---uuuuu
008 231223s2000 xx |||||o 00| ||eng c
024 7 |a 10.1109/83.826782  |2 doi 
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177432691 
035 |a (NLM)18255416 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schneider, M K  |e verfasserin  |4 aut 
245 1 0 |a Multiscale methods for the segmentation and reconstruction of signals and images 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 07.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of both segmenting and reconstructing a noisy signal or image. The work is motivated by large problems arising in certain scientific applications, such as medical imaging. Two objectives for a segmentation and denoising algorithm are laid out: it should be computationally efficient and capable of generating statistics for the errors in the reconstruction and estimates of the boundary locations. The starting point for the development of a suitable algorithm is a variational approach to segmentation (Shah 1992). This paper then develops a precise statistical interpretation of a one dimensional (1-D) version of this variational approach to segmentation. The 1-D algorithm that arises as a result of this analysis is computationally efficient and capable of generating error statistics. A straightforward extension of this algorithm to two dimensions would incorporate recursive procedures for computing estimates of inhomogeneous Gaussian Markov random fields. Such procedures require an unacceptably large number of operations. To meet the objective of developing a computationally efficient algorithm, the use of previously developed multiscale statistical methods is investigated. This results in the development of an algorithm for segmenting and denoising which is not only computationally efficient but also capable of generating error statistics, as desired 
650 4 |a Journal Article 
700 1 |a Fieguth, P W  |e verfasserin  |4 aut 
700 1 |a Karl, W C  |e verfasserin  |4 aut 
700 1 |a Willsky, A S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 9(2000), 3 vom: 15., Seite 456-68  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:9  |g year:2000  |g number:3  |g day:15  |g pages:456-68 
856 4 0 |u http://dx.doi.org/10.1109/83.826782  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 9  |j 2000  |e 3  |b 15  |h 456-68