Multiscale methods for the segmentation and reconstruction of signals and images

This paper addresses the problem of both segmenting and reconstructing a noisy signal or image. The work is motivated by large problems arising in certain scientific applications, such as medical imaging. Two objectives for a segmentation and denoising algorithm are laid out: it should be computatio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 9(2000), 3 vom: 15., Seite 456-68
1. Verfasser: Schneider, M K (VerfasserIn)
Weitere Verfasser: Fieguth, P W, Karl, W C, Willsky, A S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper addresses the problem of both segmenting and reconstructing a noisy signal or image. The work is motivated by large problems arising in certain scientific applications, such as medical imaging. Two objectives for a segmentation and denoising algorithm are laid out: it should be computationally efficient and capable of generating statistics for the errors in the reconstruction and estimates of the boundary locations. The starting point for the development of a suitable algorithm is a variational approach to segmentation (Shah 1992). This paper then develops a precise statistical interpretation of a one dimensional (1-D) version of this variational approach to segmentation. The 1-D algorithm that arises as a result of this analysis is computationally efficient and capable of generating error statistics. A straightforward extension of this algorithm to two dimensions would incorporate recursive procedures for computing estimates of inhomogeneous Gaussian Markov random fields. Such procedures require an unacceptably large number of operations. To meet the objective of developing a computationally efficient algorithm, the use of previously developed multiscale statistical methods is investigated. This results in the development of an algorithm for segmenting and denoising which is not only computationally efficient but also capable of generating error statistics, as desired
Beschreibung:Date Completed 02.10.2012
Date Revised 07.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149
DOI:10.1109/83.826782