Some novel classifiers designed using prototypes extracted by a new scheme based on self-organizing feature map

We propose two new comprehensive schemes for designing prototype-based classifiers. The scheme addresses all major issues (number of prototypes, generation of prototypes, and utilization of the prototypes) involved in the design of a prototype-based classifier. First we use Kohonen's self-organ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 31(2001), 6 vom: 15., Seite 881-90
1. Verfasser: Laha, A (VerfasserIn)
Weitere Verfasser: Pal, N R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177331968
003 DE-627
005 20250209042712.0
007 cr uuu---uuuuu
008 231223s2001 xx |||||o 00| ||eng c
024 7 |a 10.1109/3477.969492  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177331968 
035 |a (NLM)18244854 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Laha, A  |e verfasserin  |4 aut 
245 1 0 |a Some novel classifiers designed using prototypes extracted by a new scheme based on self-organizing feature map 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose two new comprehensive schemes for designing prototype-based classifiers. The scheme addresses all major issues (number of prototypes, generation of prototypes, and utilization of the prototypes) involved in the design of a prototype-based classifier. First we use Kohonen's self-organizing feature map (SOFM) algorithm to produce a minimum number (equal to the number of classes) of initial prototypes. Then we use a dynamic prototype generation and tuning algorithm (DYNAGEN) involving merging, splitting, deleting, and retraining of the prototypes to generate an adequate number of useful prototypes. These prototypes are used to design a "1 nearest multiple prototype (1-NMP)" classifier. Though the classifier performs quite well, it cannot reasonably deal with large variation of variance among the data from different classes. To overcome this deficiency we design a "1 most similar prototype (1-MSP)" classifier. We use the prototypes generated by the SOFM-based DYNAGEN algorithm and associate with each of them a zone of influence. A norm (Euclidean)-induced similarity measure is used for this. The prototypes and their zones of influence are fine-tuned by minimizing an error function. Both classifiers are trained and tested using several data sets, and a consistent improvement in performance of the latter over the former has been observed. We also compared our classifiers with some benchmark results available in the literature 
650 4 |a Journal Article 
700 1 |a Pal, N R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 31(2001), 6 vom: 15., Seite 881-90  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:31  |g year:2001  |g number:6  |g day:15  |g pages:881-90 
856 4 0 |u http://dx.doi.org/10.1109/3477.969492  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2001  |e 6  |b 15  |h 881-90