Bayesian multichannel image restoration using compound Gauss-Markov random fields

In this paper, we develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 12 vom: 15., Seite 1642-54
1. Verfasser: Molina, Rafael (VerfasserIn)
Weitere Verfasser: Mateos, Javier, Katsaggelos, Aggelos K, Vega, Miguel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177330627
003 DE-627
005 20231223145954.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.818015  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM177330627 
035 |a (NLM)18244718 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Molina, Rafael  |e verfasserin  |4 aut 
245 1 0 |a Bayesian multichannel image restoration using compound Gauss-Markov random fields 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2010 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel image, two new iterative algorithms are presented and their convergence is established. They can be considered as extensions of the classical simulated annealing and iterative conditional methods. Experimental results with color images demonstrate the effectiveness of the proposed approaches 
650 4 |a Journal Article 
700 1 |a Mateos, Javier  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
700 1 |a Vega, Miguel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 12 vom: 15., Seite 1642-54  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:12  |g day:15  |g pages:1642-54 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.818015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 12  |b 15  |h 1642-54