Bayesian multichannel image restoration using compound Gauss-Markov random fields

In this paper, we develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 12 vom: 15., Seite 1642-54
1. Verfasser: Molina, Rafael (VerfasserIn)
Weitere Verfasser: Mateos, Javier, Katsaggelos, Aggelos K, Vega, Miguel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel image, two new iterative algorithms are presented and their convergence is established. They can be considered as extensions of the classical simulated annealing and iterative conditional methods. Experimental results with color images demonstrate the effectiveness of the proposed approaches
Beschreibung:Date Completed 20.05.2010
Date Revised 04.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2003.818015