Multichannel blind image deconvolution using the Bussgang algorithm : spatial and multiresolution approaches

This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final es...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 11 vom: 15., Seite 1324-37
1. Verfasser: Panci, Gianpiero (VerfasserIn)
Weitere Verfasser: Campisi, Patrizio, Colonnese, Stefania, Scarano, Gaetano
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17733035X
003 DE-627
005 20231223145954.0
007 cr uuu---uuuuu
008 231223s2003 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2003.818022  |2 doi 
028 5 2 |a pubmed24n0591.xml 
035 |a (DE-627)NLM17733035X 
035 |a (NLM)18244691 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Panci, Gianpiero  |e verfasserin  |4 aut 
245 1 0 |a Multichannel blind image deconvolution using the Bussgang algorithm  |b spatial and multiresolution approaches 
264 1 |c 2003 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2009 
500 |a Date Revised 04.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final estimation step of the Bussgang algorithm is developed according to the minimum mean square error criterion in the case of spatially uncorrelated images. For spatially correlated images, the nonlinearity design is rather conducted using a particular wavelet decomposition that, detecting lines, edges, and higher order structures, carries out a task analogous to those of the (preattentive) stage of the human visual system. Experimental results pertaining to restoration of motion blurred text images, out-of-focus spiky images, and blurred natural images are reported 
650 4 |a Journal Article 
700 1 |a Campisi, Patrizio  |e verfasserin  |4 aut 
700 1 |a Colonnese, Stefania  |e verfasserin  |4 aut 
700 1 |a Scarano, Gaetano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 12(2003), 11 vom: 15., Seite 1324-37  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:12  |g year:2003  |g number:11  |g day:15  |g pages:1324-37 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2003.818022  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2003  |e 11  |b 15  |h 1324-37