Multichannel blind image deconvolution using the Bussgang algorithm : spatial and multiresolution approaches

This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final es...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 12(2003), 11 vom: 15., Seite 1324-37
1. Verfasser: Panci, Gianpiero (VerfasserIn)
Weitere Verfasser: Campisi, Patrizio, Colonnese, Stefania, Scarano, Gaetano
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This work extends the Bussgang blind equalization algorithm to the multichannel case with application to image deconvolution problems. We address the restoration of images with poor spatial correlation as well as strongly correlated (natural) images. The spatial nonlinearity employed in the final estimation step of the Bussgang algorithm is developed according to the minimum mean square error criterion in the case of spatially uncorrelated images. For spatially correlated images, the nonlinearity design is rather conducted using a particular wavelet decomposition that, detecting lines, edges, and higher order structures, carries out a task analogous to those of the (preattentive) stage of the human visual system. Experimental results pertaining to restoration of motion blurred text images, out-of-focus spiky images, and blurred natural images are reported
Beschreibung:Date Completed 14.12.2009
Date Revised 04.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2003.818022