H(infinity) tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach

A novel adaptive fuzzy-neural sliding-mode controller with H(infinity) tracking performance for uncertain nonlinear systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbances and approximate errors. Because of the advantages of fuzzy-neural systems, which can uniformly a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 32(2002), 4 vom: 28., Seite 483-92
1. Verfasser: Wang, Wei-Yen (VerfasserIn)
Weitere Verfasser: Chan, Mei-Lang, Hsu, C J, Lee, Tsu-Tian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177268107
003 DE-627
005 20250209041237.0
007 cr uuu---uuuuu
008 231223s2002 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2002.1018767  |2 doi 
028 5 2 |a pubmed25n0591.xml 
035 |a (DE-627)NLM177268107 
035 |a (NLM)18238144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei-Yen  |e verfasserin  |4 aut 
245 1 0 |a H(infinity) tracking-based sliding mode control for uncertain nonlinear systems via an adaptive fuzzy-neural approach 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 01.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A novel adaptive fuzzy-neural sliding-mode controller with H(infinity) tracking performance for uncertain nonlinear systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbances and approximate errors. Because of the advantages of fuzzy-neural systems, which can uniformly approximate nonlinear continuous functions to arbitrary accuracy, adaptive fuzzy-neural control theory is then employed to derive the update laws for approximating the uncertain nonlinear functions of the dynamical system. Furthermore, the H(infinity) tracking design technique and the sliding-mode control method are incorporated into the adaptive fuzzy-neural control scheme so that the derived controller is robust with respect to unmodeled dynamics, disturbances and approximate errors. Compared with conventional methods, the proposed approach not only assures closed-loop stability, but also guarantees an H(infinity) tracking performance for the overall system based on a much relaxed assumption without prior knowledge on the upper bound of the lumped uncertainties. Simulation results have demonstrated that the effect of the lumped uncertainties on tracking error is efficiently attenuated, and chattering of the control input is significantly reduced by using the proposed approach 
650 4 |a Journal Article 
700 1 |a Chan, Mei-Lang  |e verfasserin  |4 aut 
700 1 |a Hsu, C J  |e verfasserin  |4 aut 
700 1 |a Lee, Tsu-Tian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 32(2002), 4 vom: 28., Seite 483-92  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:32  |g year:2002  |g number:4  |g day:28  |g pages:483-92 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2002.1018767  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2002  |e 4  |b 28  |h 483-92