Computing multiscale curve and surface skeletons of genus 0 shapes using a global importance measure

We present a practical algorithm for computing robust, multiscale curve and surface skeletons of 3D objects. Based on a model which follows an advection principle, we assign to each point on the skeleton a part of the object surface, called the collapse. The size of the collapse is used as a uniform...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 14(2008), 2 vom: 15. März, Seite 355-68
1. Verfasser: Reniers, Dennie (VerfasserIn)
Weitere Verfasser: van Wijk, Jarke, Telea, Alexandru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present a practical algorithm for computing robust, multiscale curve and surface skeletons of 3D objects. Based on a model which follows an advection principle, we assign to each point on the skeleton a part of the object surface, called the collapse. The size of the collapse is used as a uniform importance measure for the curve and surface skeleton, so that both can be simplified by imposing a single threshold on this intuitive measure. The simplified skeletons are connected by default, without special precautions, due to the monotonicity of the importance measure. The skeletons possess additional desirable properties: They are centered, robust to noise, hierarchical, and provide a natural skeleton-to-boundary mapping. We present a voxel-based algorithm that is straightforward to implement and simple to use. We illustrate our method on several realistic 3D objects
Beschreibung:Date Completed 02.04.2008
Date Revised 14.01.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TC.2007.70786