|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM176782613 |
003 |
DE-627 |
005 |
20231223144803.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la702357a
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0589.xml
|
035 |
|
|
|a (DE-627)NLM176782613
|
035 |
|
|
|a (NLM)18186654
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wong, Joyce Y
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dynamics of membrane adhesion
|b the role of polyethylene glycol spacers, ligand-receptor bond strength, and rupture pathway
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.05.2008
|
500 |
|
|
|a Date Revised 01.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Biological adhesion typically occurs through discrete cross bridges between complementary molecules on adjacent membranes. Here we report quantitative measurements of the binding distance between a lipid membrane functionalized with ligands on flexible polymer tether chains and a second membrane bearing complementary receptors using the surface force apparatus technique. The binding distance is shown to increase as a function of polymer tether length. Upon separation, adhesive failure occurs not at the strong ligand-receptor bond but primarily through the mechanical pullout of cross-bridging polymer tethers from the membrane. We summarize these measurements of complementary membrane adhesion dynamics using an energy-state diagram that encompasses the energetics of the polymer tether, ligand-receptor bond strength, and number of cross bridges formed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, N.I.H., Extramural
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Ligands
|2 NLM
|
650 |
|
7 |
|a Lipid Bilayers
|2 NLM
|
650 |
|
7 |
|a Phosphatidylethanolamines
|2 NLM
|
650 |
|
7 |
|a 1,2-distearoylphosphatidylethanolamine
|2 NLM
|
650 |
|
7 |
|a 1G4B5265CQ
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
650 |
|
7 |
|a 1,2-dilauroylphosphatidylethanolamine
|2 NLM
|
650 |
|
7 |
|a 53695-34-4
|2 NLM
|
650 |
|
7 |
|a Biotin
|2 NLM
|
650 |
|
7 |
|a 6SO6U10H04
|2 NLM
|
650 |
|
7 |
|a Streptavidin
|2 NLM
|
650 |
|
7 |
|a 9013-20-1
|2 NLM
|
700 |
1 |
|
|a Kuhl, Tonya L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 24(2008), 4 vom: 19. Feb., Seite 1225-31
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2008
|g number:4
|g day:19
|g month:02
|g pages:1225-31
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la702357a
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2008
|e 4
|b 19
|c 02
|h 1225-31
|