Theoretical study on the hydrolysis mechanism of N,N-dimethyl-N'-(2-oxo-1, 2-dihydro-pyrimidinyl)formamidine : water-assisted mechanism and cluster-continuum model

The hydrolysis reaction of N,N-dimethyl-N'-(2-oxo-1, 2-dihydro-pyrimidinyl)formamidine (DMPFA), a model compound of the antivirus drug amidine-3TC (3TC = 2', 3'-dideoxy-3'-thiacytidine), is investigated by the hybrid density functional theory B3LYP/6-31+G (d,p) method. The hydrol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 29(2008), 8 vom: 15. Juni, Seite 1222-32
1. Verfasser: Wu, Yong (VerfasserIn)
Weitere Verfasser: Jin, Lu, Xue, Ying, Xie, Dai Qian, Kim, Chan Kyung, Guo, Yong, Yan, Guo Sen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The hydrolysis reaction of N,N-dimethyl-N'-(2-oxo-1, 2-dihydro-pyrimidinyl)formamidine (DMPFA), a model compound of the antivirus drug amidine-3TC (3TC = 2', 3'-dideoxy-3'-thiacytidine), is investigated by the hybrid density functional theory B3LYP/6-31+G (d,p) method. The hydrolysis reaction of the title compound is predicted to undergo via two pathways, each of which is a stepwise process. Path A is the addition of H2O to the C=N double bond in the amidine group to form a tetrahedral structure in its first step, and then the transfer of the H atom of hydroxyl leads to the corresponding products via four possible channels. Path B simultaneously involves the nucleophilic attack of H2O to the C atom of the C=N bond and the proton transfer to the N atom of amino group leading to the cleavage of the C-N single bond in the amidine group. The results indicate that path A is more favorable than path B in the gas phase. Moreover, to simulate the title reaction in aqueous solution, water-assisted mechanism and the cluster-continuum model, based on the SCRF/CPCM model, are taken into account in our work. The results indicate that it is rational for two water molecules served as a bridge to assist in the first step of path A and that cytosine rather than the cytosine-substituted formamide should be released from the tetrahedral intermediate via s six-membered cycle transition state (channel 2). Our calculations exhibit that the process toward the tetrahedral intermediate is the rate-determining step both in the gas phase and in aqueous solution
Beschreibung:Date Completed 03.06.2008
Date Revised 16.04.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X