Solvent dependent friction force response of polystyrene brushes prepared by surface initiated polymerization

Polystyrene (PS) brushes were prepared on oxide passivated silicon by the surface initiated polymerization (SIP) technique. From an AIBN-type free radical initiator, which was silanized and immobilized on silicon wafers, styrene brushes were directly polymerized and grafted from the surface. The for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 24 vom: 20. Nov., Seite 12196-201
1. Verfasser: Limpoco, F T (VerfasserIn)
Weitere Verfasser: Advincula, Rigoberto C, Perry, Scott S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polystyrene (PS) brushes were prepared on oxide passivated silicon by the surface initiated polymerization (SIP) technique. From an AIBN-type free radical initiator, which was silanized and immobilized on silicon wafers, styrene brushes were directly polymerized and grafted from the surface. The formation of the initiator monolayer and, subsequently, the polymer brush on the surface were monitored by X-ray photoelectron spectroscopy (XPS) and ellipsometry. Friction force measurements were performed by atomic force microscopy (AFM), using a 5 microm SiO2 colloidal sphere tip and under systematically varied solvent environments (nonpolar to polar), to demonstrate the dependence of brush lubricity on solvation. The relative uptake of solvents in the PS brush was determined by quartz crystal microbalance (QCM), and it correlates well with friction data. It is surmised that, in poor solvent environments, the polymer brush exists in a collapsed conformation, giving rise to the higher observed friction response
Beschreibung:Date Completed 08.02.2008
Date Revised 13.11.2007
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827