New SFA techniques for studying surface forces and thin film patterns induced by electric fields

We describe two ways to measure normal and/or lateral forces between two surfaces in a surface forces apparatus (SFA) while an electric field is applied between the surfaces. The first method involves depositing thin conductive layers on the exposed substrate (usually mica) sheets; the second involv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 4 vom: 19. Feb., Seite 1173-82
1. Verfasser: Zeng, Hongbo (VerfasserIn)
Weitere Verfasser: Tian, Yu, Anderson, Travers H, Tirrell, Matthew, Israelachvili, Jacob N
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We describe two ways to measure normal and/or lateral forces between two surfaces in a surface forces apparatus (SFA) while an electric field is applied between the surfaces. The first method involves depositing thin conductive layers on the exposed substrate (usually mica) sheets; the second involves using the optically reflecting silver layers on the back surfaces of the sheets as the electrodes. Two types of experiments were performed using these new techniques: (1) measuring the effects of an electric field on the rheology of an approximately 40-microm-thick film of zeolite particles suspended in silicone oil and (2) a dynamic study of electric field-induced pattern formation of a thin polymer film. In the first study, under an electric field of strength approximately 106 V/m the shear force or effective viscosity of the colloid suspension was found to be two orders of magnitude higher than in the absence of the field, when the expected bulk value was measured. In the dynamic study, the initially uniform film transformed into a 2-D honeycombed network of depressed cells bounded by elevated ridges that grew slowly with time in a way consistent with previously derived theories. The new techniques should be applicable to studies of other systems and interactions, such as double-layer forces, micro- and nanoelectrorheology, electric field-induced ordering of particles, and the effects of electric fields on adhesion, friction, and lubrication
Beschreibung:Date Completed 07.05.2008
Date Revised 13.02.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827