Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions

(c) 2007 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 29(2008), 5 vom: 15. Apr., Seite 820-31
1. Verfasser: Olson, Mark A (VerfasserIn)
Weitere Verfasser: Feig, Michael, Brooks, Charles L 3rd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Proteins
LEADER 01000naa a22002652 4500
001 NLM173832911
003 DE-627
005 20231223134616.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0580.xml 
035 |a (DE-627)NLM173832911 
035 |a (NLM)17876760 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Olson, Mark A  |e verfasserin  |4 aut 
245 1 0 |a Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.06.2008 
500 |a Date Revised 04.03.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2007 Wiley Periodicals, Inc. 
520 |a This article examines ab initio methods for the prediction of protein loops by a computational strategy of multiscale conformational sampling and physical energy scoring functions. Our approach consists of initial sampling of loop conformations from lattice-based low-resolution models followed by refinement using all-atom simulations. To allow enhanced conformational sampling, the replica exchange method was implemented. Physical energy functions based on CHARMM19 and CHARMM22 parameterizations with generalized Born (GB) solvent models were applied in scoring loop conformations extracted from the lattice simulations and, in the case of all-atom simulations, the ensemble of conformations were generated and scored with these models. Predictions are reported for 25 loop segments, each eight residues long and taken from a diverse set of 22 protein structures. We find that the simulations generally sampled conformations with low global root-mean-square-deviation (RMSD) for loop backbone coordinates from the known structures, whereas clustering conformations in RMSD space and scoring detected less favorable loop structures. Specifically, the lattice simulations sampled basins that exhibited an average global RMSD of 2.21 +/- 1.42 A, whereas clustering and scoring the loop conformations determined an RMSD of 3.72 +/- 1.91 A. Using CHARMM19/GB to refine the lattice conformations improved the sampling RMSD to 1.57 +/- 0.98 A and detection to 2.58 +/- 1.48 A. We found that further improvement could be gained from extending the upper temperature in the all-atom refinement from 400 to 800 K, where the results typically yield a reduction of approximately 1 A or greater in the RMSD of the detected loop. Overall, CHARMM19 with a simple pairwise GB solvent model is more efficient at sampling low-RMSD loop basins than CHARMM22 with a higher-resolution modified analytical GB model; however, the latter simulation method provides a more accurate description of the all-atom energy surface, yet demands a much greater computational cost 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Proteins  |2 NLM 
700 1 |a Feig, Michael  |e verfasserin  |4 aut 
700 1 |a Brooks, Charles L  |c 3rd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 29(2008), 5 vom: 15. Apr., Seite 820-31  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:29  |g year:2008  |g number:5  |g day:15  |g month:04  |g pages:820-31 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2008  |e 5  |b 15  |c 04  |h 820-31