Effects of municipal solid waste compost application on the microbial biomass of cultivated and non-cultivated soil in a semi-arid zone
The aim of this study was to assess whether soil microbial biomass could be used as an indicator of environmental changes following the application of organic residue (compost of municipal solid waste and farmyard manure) or mineral fertilizers (N and P) into cultivated or uncultivated loam-clayey s...
Veröffentlicht in: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 25(2007), 4 vom: 18. Aug., Seite 334-42 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2007
|
Zugriff auf das übergeordnete Werk: | Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Fertilizers Soil Carbon 7440-44-0 Nitrogen N762921K75 |
Zusammenfassung: | The aim of this study was to assess whether soil microbial biomass could be used as an indicator of environmental changes following the application of organic residue (compost of municipal solid waste and farmyard manure) or mineral fertilizers (N and P) into cultivated or uncultivated loam-clayey soil, for three consecutive years. The carbon and nitrogen of the microbial biomass (B(C) and B(N) were studied using the fumigation-extraction method. For the two cultivated and uncultivated plots, B(N) and B(C) were more important in the superficial profile (0-20 cm) than in the deep one (20-40 cm). In the uncultivated soil, we observed a good linear relation between B(C) and B(N) at the level of upper soil horizon during the wet season with r coefficients of 0.95, 0.71 and 0.80 for the consecutive years 2000, 2001 and 2002, respectively. Microbial biomasses C and N increased during the rainy season and decreased during the dry season. Microbial biomass C and N showed the higher content with compost and farmyard manure at 40 tonnes ha(-1). Moreover, the results showed that at the beginning of the experiment, the microbial biomass was higher in the ploughed wheat-cultivated plot than in the uncultivated one. Microbial biomass C and N in the cultivated plot amended with compost at 40 tonnes ha(-1) were significantly different in comparison with the soil microbial biomass amended with farmyard manure. The combining of chemical fertilizer with the organic fertilizer, such as compost at 40 or 80 tonnes ha(-1) and farmyard manure, increased the microbial biomasses C and N after 1 and 2 years. In the cultivated or uncultivated plots the results revealed that the best application rate of the compost was 40 tonnes ha(-1) and when the compost rate was increased from 40 to 80 tonnes ha(-1) both B(C) and B(N) decreased significantly |
---|---|
Beschreibung: | Date Completed 30.11.2007 Date Revised 16.11.2017 published: Print Citation Status MEDLINE |
ISSN: | 1096-3669 |