|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM172238609 |
003 |
DE-627 |
005 |
20231223131353.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0574.xml
|
035 |
|
|
|a (DE-627)NLM172238609
|
035 |
|
|
|a (NLM)17711312
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rabideau, Brooks D
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A computational study of the hydrodynamically assisted organization of DNA-functionalized colloids in 2D
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.11.2007
|
500 |
|
|
|a Date Revised 18.09.2007
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We study computationally the self-organization of DNA-functionalized colloidal particles confined to two dimensions and subjected to a linear shear force. We show that hydrodynamic forces allow a more thorough sampling of phase space than thermal or Brownian forces alone. Two particle types are present in each of our dynamic simulations each signifying its own specific oligonucleotide sequence grafted to the particle surface: A-type and B-type. Particles are modeled as interacting via a type-specific DNA attraction where unlike-types have affinities for each other while like-types do not. The particles are small enough to feel Brownian motion while the shear adds motion to the particles. We find the formation of lines of A-type and B-type particles in simulations with an imposed shear. Simulations without imposed shear form a frustrated network with little or no linear order. An orientational distribution function, g2(r), quantifies the degree of linear order. A phase diagram is constructed, finding a linear dependence of the minimum DNA force necessary for line formation on the dimensionless shear rate. A force analysis performed on the structures shows that the lines orient perpendicular to the axis of the elongation component of the shear because it is this orientation that allows the DNA attraction to resist the shear
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Colloids
|2 NLM
|
650 |
|
7 |
|a DNA
|2 NLM
|
650 |
|
7 |
|a 9007-49-2
|2 NLM
|
700 |
1 |
|
|a Bonnecaze, Roger T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 23(2007), 20 vom: 25. Sept., Seite 10000-7
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2007
|g number:20
|g day:25
|g month:09
|g pages:10000-7
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2007
|e 20
|b 25
|c 09
|h 10000-7
|