A computational study of the hydrodynamically assisted organization of DNA-functionalized colloids in 2D

We study computationally the self-organization of DNA-functionalized colloidal particles confined to two dimensions and subjected to a linear shear force. We show that hydrodynamic forces allow a more thorough sampling of phase space than thermal or Brownian forces alone. Two particle types are pres...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 23(2007), 20 vom: 25. Sept., Seite 10000-7
1. Verfasser: Rabideau, Brooks D (VerfasserIn)
Weitere Verfasser: Bonnecaze, Roger T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Colloids DNA 9007-49-2
Beschreibung
Zusammenfassung:We study computationally the self-organization of DNA-functionalized colloidal particles confined to two dimensions and subjected to a linear shear force. We show that hydrodynamic forces allow a more thorough sampling of phase space than thermal or Brownian forces alone. Two particle types are present in each of our dynamic simulations each signifying its own specific oligonucleotide sequence grafted to the particle surface: A-type and B-type. Particles are modeled as interacting via a type-specific DNA attraction where unlike-types have affinities for each other while like-types do not. The particles are small enough to feel Brownian motion while the shear adds motion to the particles. We find the formation of lines of A-type and B-type particles in simulations with an imposed shear. Simulations without imposed shear form a frustrated network with little or no linear order. An orientational distribution function, g2(r), quantifies the degree of linear order. A phase diagram is constructed, finding a linear dependence of the minimum DNA force necessary for line formation on the dimensionless shear rate. A force analysis performed on the structures shows that the lines orient perpendicular to the axis of the elongation component of the shear because it is this orientation that allows the DNA attraction to resist the shear
Beschreibung:Date Completed 13.11.2007
Date Revised 18.09.2007
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827