Spreading of completely wetting or partially wetting power-law fluid on solid surface

This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 23(2007), 18 vom: 28. Aug., Seite 9258-62
1. Verfasser: Wang, X D (VerfasserIn)
Weitere Verfasser: Zhang, Y, Lee, D J, Peng, X F
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM171909259
003 DE-627
005 20231223130656.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0573.xml 
035 |a (DE-627)NLM171909259 
035 |a (NLM)17676773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, X D  |e verfasserin  |4 aut 
245 1 0 |a Spreading of completely wetting or partially wetting power-law fluid on solid surface 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2007 
500 |a Date Revised 21.08.2007 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over time can be expressed by the power law R = atm, where the spreading exponent m of the dilatant fluids is >0.1 and the spreading exponent m of pseudo-plastic fluids is <0.1. The strength of non-Newtonian effects is positively correlated to the extent of deviation from the theoretical value 0.1 of m for Newtonian fluids. For the partially wetting system, the power law on the time dependence of the wetting radius no longer holds; therefore, an exponential power law, R = Req(1-exp(-at(m)/Req)), is proposed, where Req denotes the equilibrium radius of drop and a is a coefficient. Comparing experimental data with the exponential power law revealed that both are in good agreement 
650 4 |a Journal Article 
700 1 |a Zhang, Y  |e verfasserin  |4 aut 
700 1 |a Lee, D J  |e verfasserin  |4 aut 
700 1 |a Peng, X F  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 23(2007), 18 vom: 28. Aug., Seite 9258-62  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:23  |g year:2007  |g number:18  |g day:28  |g month:08  |g pages:9258-62 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 23  |j 2007  |e 18  |b 28  |c 08  |h 9258-62