Spreading of completely wetting or partially wetting power-law fluid on solid surface

This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 23(2007), 18 vom: 28. Aug., Seite 9258-62
1. Verfasser: Wang, X D (VerfasserIn)
Weitere Verfasser: Zhang, Y, Lee, D J, Peng, X F
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This study investigated the drop-spreading dynamics of pseudo-plastic and dilatant fluids. Experimental results indicated that the spreading law for both fluids is related to rheological characteristics or power exponent n. For the completely wetting system, the evolution of the wetting radius over time can be expressed by the power law R = atm, where the spreading exponent m of the dilatant fluids is >0.1 and the spreading exponent m of pseudo-plastic fluids is <0.1. The strength of non-Newtonian effects is positively correlated to the extent of deviation from the theoretical value 0.1 of m for Newtonian fluids. For the partially wetting system, the power law on the time dependence of the wetting radius no longer holds; therefore, an exponential power law, R = Req(1-exp(-at(m)/Req)), is proposed, where Req denotes the equilibrium radius of drop and a is a coefficient. Comparing experimental data with the exponential power law revealed that both are in good agreement
Beschreibung:Date Completed 02.10.2007
Date Revised 21.08.2007
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827