Robust image segmentation using resampling and shape constraints

Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. We propose an integrated approach for image segmentation based on a generative clustering model combined with coarse shape information and robust parameter estimati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 7 vom: 06. Juli, Seite 1147-64
1. Verfasser: Zöller, Thomas (VerfasserIn)
Weitere Verfasser: Buhmann, Joachim M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM170232999
003 DE-627
005 20250208072822.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0568.xml 
035 |a (DE-627)NLM170232999 
035 |a (NLM)17496374 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zöller, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Robust image segmentation using resampling and shape constraints 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 18.07.2007 
500 |a Date Revised 14.05.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. We propose an integrated approach for image segmentation based on a generative clustering model combined with coarse shape information and robust parameter estimation. The sensitivity of segmentation solutions to image variations is measured by image resampling. Shape information is included in the inference process to guide ambiguous groupings of color and texture features. Shape and similarity-based grouping information is combined into a semantic likelihood map in the framework of Bayesian statistics. Experimental evidence shows that semantically meaningful segments are inferred even when image data alone gives rise to ambiguous segmentations 
650 4 |a Journal Article 
700 1 |a Buhmann, Joachim M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 7 vom: 06. Juli, Seite 1147-64  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:7  |g day:06  |g month:07  |g pages:1147-64 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 7  |b 06  |c 07  |h 1147-64