Robust image segmentation using resampling and shape constraints

Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. We propose an integrated approach for image segmentation based on a generative clustering model combined with coarse shape information and robust parameter estimati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 7 vom: 06. Juli, Seite 1147-64
1. Verfasser: Zöller, Thomas (VerfasserIn)
Weitere Verfasser: Buhmann, Joachim M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. We propose an integrated approach for image segmentation based on a generative clustering model combined with coarse shape information and robust parameter estimation. The sensitivity of segmentation solutions to image variations is measured by image resampling. Shape information is included in the inference process to guide ambiguous groupings of color and texture features. Shape and similarity-based grouping information is combined into a semantic likelihood map in the framework of Bayesian statistics. Experimental evidence shows that semantically meaningful segments are inferred even when image data alone gives rise to ambiguous segmentations
Beschreibung:Date Completed 18.07.2007
Date Revised 14.05.2007
published: Print
Citation Status MEDLINE
ISSN:0162-8828