Robust stability of switched Cohen-Grossberg Neural networks with mixed time-varying delays

By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 36(2006), 6 vom: 15. Dez., Seite 1356-63
1. Verfasser: Yuan, Kun (VerfasserIn)
Weitere Verfasser: Cao, Jinde, Li, Han-Xiong
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM167358200
003 DE-627
005 20250207214214.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0558.xml 
035 |a (DE-627)NLM167358200 
035 |a (NLM)17186811 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yuan, Kun  |e verfasserin  |4 aut 
245 1 0 |a Robust stability of switched Cohen-Grossberg Neural networks with mixed time-varying delays 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.03.2007 
500 |a Date Revised 10.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based on a Lyapunov approach and linear matrix inequality (LMI) technique. Simple sufficient conditions are given to guarantee the switched Cohen-Grossberg neural networks to be globally asymptotically stable for all admissible parametric uncertainties. The proposed LMI-based results are computationally efficient as they can be solved numerically using standard commercial software. An example is given to illustrate the usefulness of the results 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cao, Jinde  |e verfasserin  |4 aut 
700 1 |a Li, Han-Xiong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 36(2006), 6 vom: 15. Dez., Seite 1356-63  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:36  |g year:2006  |g number:6  |g day:15  |g month:12  |g pages:1356-63 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2006  |e 6  |b 15  |c 12  |h 1356-63