Robust stability of switched Cohen-Grossberg Neural networks with mixed time-varying delays
By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based o...
Veröffentlicht in: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 36(2006), 6 vom: 15. Dez., Seite 1356-63 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | By combining Cohen-Grossberg neural networks with an arbitrary switching rule, the mathematical model of a class of switched Cohen-Grossberg neural networks with mixed time-varying delays is established. Moreover, robust stability for such switched Cohen-Grossberg neural networks is analyzed based on a Lyapunov approach and linear matrix inequality (LMI) technique. Simple sufficient conditions are given to guarantee the switched Cohen-Grossberg neural networks to be globally asymptotically stable for all admissible parametric uncertainties. The proposed LMI-based results are computationally efficient as they can be solved numerically using standard commercial software. An example is given to illustrate the usefulness of the results |
---|---|
Beschreibung: | Date Completed 05.03.2007 Date Revised 10.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1083-4419 |