Spontaneously forming ellipsoidal phospholipid unilamellar vesicles and their interactions with helical domains of saposin C
We have observed a bimodal distribution of ellipsoidal unilamellar vesicles (ULVs) in a phospholipid mixture composed of dioleoyl phosphatidylserine (DOPS) and dipalmitoyl and dihexanoyl phosphatidylcholine, DPPC and DHPC, respectively. Dynamic light scattering and transmission electron microscopy d...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 26 vom: 19. Dez., Seite 11028-33 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Phospholipids Saposins Unilamellar Liposomes |
Zusammenfassung: | We have observed a bimodal distribution of ellipsoidal unilamellar vesicles (ULVs) in a phospholipid mixture composed of dioleoyl phosphatidylserine (DOPS) and dipalmitoyl and dihexanoyl phosphatidylcholine, DPPC and DHPC, respectively. Dynamic light scattering and transmission electron microscopy data indicate a bimodal size distribution of these nanoparticles with hydrodynamic radii of approximately 200 and >500 nm, while small-angle neutron scattering data were fit using a model of coexisting monodisperse morphologies, namely, oblate and triaxial ellipsoidal vesicles. Unlike DOPS ULV formed by sonication, which can fuse days after being formed, these ULVs are stable over a period of 12 months at 4 degrees C. We also report on the structure of these ULVs associated with the two helical peptide domains (H1 and H2) of a glucosylprotein, namely, Saposin C, to gain some insight into protein-membrane interactions |
---|---|
Beschreibung: | Date Completed 26.01.2007 Date Revised 03.12.2007 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |