Blind deconvolution using a variational approach to parameter, image, and blur estimation

Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image forma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 12 vom: 20. Dez., Seite 3715-27
1. Verfasser: Molina, Rafael (VerfasserIn)
Weitere Verfasser: Mateos, Javier, Katsaggelos, Aggelos K
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM167048465
003 DE-627
005 20231223112104.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0557.xml 
035 |a (DE-627)NLM167048465 
035 |a (NLM)17153945 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Molina, Rafael  |e verfasserin  |4 aut 
245 1 0 |a Blind deconvolution using a variational approach to parameter, image, and blur estimation 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 04.01.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image formation noise. We show how the gamma distributions on the unknown hyperparameters can be used to prevent the proposed blind deconvolution method from converging to undesirable image and blur estimates and also how these distributions can be inferred in realistic situations. We apply variational methods to approximate the posterior probability of the unknown image, blur, and hyperparameters and propose two different approximations of the posterior distribution. One of these approximations coincides with a classical blind deconvolution method. The proposed algorithms are tested experimentally and compared with existing blind deconvolution methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mateos, Javier  |e verfasserin  |4 aut 
700 1 |a Katsaggelos, Aggelos K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 12 vom: 20. Dez., Seite 3715-27  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:12  |g day:20  |g month:12  |g pages:3715-27 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 12  |b 20  |c 12  |h 3715-27