Blind deconvolution using a variational approach to parameter, image, and blur estimation

Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image forma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 12 vom: 20. Dez., Seite 3715-27
1. Verfasser: Molina, Rafael (VerfasserIn)
Weitere Verfasser: Mateos, Javier, Katsaggelos, Aggelos K
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Following the hierarchical Bayesian framework for blind deconvolution problems, in this paper, we propose the use of simultaneous autoregressions as prior distributions for both the image and blur, and gamma distributions for the unknown parameters (hyperparameters) of the priors and the image formation noise. We show how the gamma distributions on the unknown hyperparameters can be used to prevent the proposed blind deconvolution method from converging to undesirable image and blur estimates and also how these distributions can be inferred in realistic situations. We apply variational methods to approximate the posterior probability of the unknown image, blur, and hyperparameters and propose two different approximations of the posterior distribution. One of these approximations coincides with a classical blind deconvolution method. The proposed algorithms are tested experimentally and compared with existing blind deconvolution methods
Beschreibung:Date Completed 04.01.2007
Date Revised 26.10.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042