Correspondence-free determination of the affine fundamental matrix

Fundamental matrix estimation is a central problem in computer vision and forms the basis of tasks such as stereo imaging and structure from motion. Existing algorithms typically analyze the relative geometries of matched feature points identified in both projected views. Automated feature matching...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 1 vom: 16. Jan., Seite 82-97
1. Verfasser: Lehmann, Stefan (VerfasserIn)
Weitere Verfasser: Bradley, Andrew P, Clarkson, I Vaughan L, Williams, John, Kootsookos, Peter J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM166620068
003 DE-627
005 20231223111201.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0556.xml 
035 |a (DE-627)NLM166620068 
035 |a (NLM)17108385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lehmann, Stefan  |e verfasserin  |4 aut 
245 1 0 |a Correspondence-free determination of the affine fundamental matrix 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.01.2007 
500 |a Date Revised 10.11.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Fundamental matrix estimation is a central problem in computer vision and forms the basis of tasks such as stereo imaging and structure from motion. Existing algorithms typically analyze the relative geometries of matched feature points identified in both projected views. Automated feature matching is itself a challenging problem. Results typically have a large number of false matches. Traditional fundamental matrix estimation methods are very sensitive to matching errors, which led naturally to the application of robust statistical estimation techniques to the problem. In this work, an entirely novel approach is proposed to the fundamental matrix estimation problem. Instead of analyzing the geometry of matched feature points, the problem is recast in the frequency domain through the use of Integral Projection, showing how this is a reasonable model for orthographic cameras. The problem now reduces to one of identifying matching lines in the frequency domain which, most importantly, requires no feature matching or correspondence information. Experimental results on both real and synthetic data are presented that demonstrate the algorithm is a practical technique for fundamental matrix estimation. The behavior of the proposed algorithm is additionally characterized with respect to input noise, feature counts, and other parameters of interest 
650 4 |a Journal Article 
700 1 |a Bradley, Andrew P  |e verfasserin  |4 aut 
700 1 |a Clarkson, I Vaughan L  |e verfasserin  |4 aut 
700 1 |a Williams, John  |e verfasserin  |4 aut 
700 1 |a Kootsookos, Peter J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 1 vom: 16. Jan., Seite 82-97  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:1  |g day:16  |g month:01  |g pages:82-97 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 1  |b 16  |c 01  |h 82-97