Correspondence-free determination of the affine fundamental matrix

Fundamental matrix estimation is a central problem in computer vision and forms the basis of tasks such as stereo imaging and structure from motion. Existing algorithms typically analyze the relative geometries of matched feature points identified in both projected views. Automated feature matching...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 1 vom: 16. Jan., Seite 82-97
1. Verfasser: Lehmann, Stefan (VerfasserIn)
Weitere Verfasser: Bradley, Andrew P, Clarkson, I Vaughan L, Williams, John, Kootsookos, Peter J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Fundamental matrix estimation is a central problem in computer vision and forms the basis of tasks such as stereo imaging and structure from motion. Existing algorithms typically analyze the relative geometries of matched feature points identified in both projected views. Automated feature matching is itself a challenging problem. Results typically have a large number of false matches. Traditional fundamental matrix estimation methods are very sensitive to matching errors, which led naturally to the application of robust statistical estimation techniques to the problem. In this work, an entirely novel approach is proposed to the fundamental matrix estimation problem. Instead of analyzing the geometry of matched feature points, the problem is recast in the frequency domain through the use of Integral Projection, showing how this is a reasonable model for orthographic cameras. The problem now reduces to one of identifying matching lines in the frequency domain which, most importantly, requires no feature matching or correspondence information. Experimental results on both real and synthetic data are presented that demonstrate the algorithm is a practical technique for fundamental matrix estimation. The behavior of the proposed algorithm is additionally characterized with respect to input noise, feature counts, and other parameters of interest
Beschreibung:Date Completed 30.01.2007
Date Revised 10.11.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539