Microbial community of biological phosphorus removal process fed with municipal wastewater under different electron acceptor conditions

The microbial community in a biological phosphorus removal process under different electron acceptor conditions was estimated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) assay and principal-component analysis (PCA). For this purpose, a lab-scale sequencing batch r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 54(2006), 1 vom: 02., Seite 81-9
1. Verfasser: Shoji, T (VerfasserIn)
Weitere Verfasser: Nittami, T, Onuki, M, Satoh, H, Mino, T
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article DNA Primers Industrial Waste RNA, Bacterial RNA, Ribosomal, 16S Water Pollutants, Chemical Phosphorus 27YLU75U4W
Beschreibung
Zusammenfassung:The microbial community in a biological phosphorus removal process under different electron acceptor conditions was estimated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) assay and principal-component analysis (PCA). For this purpose, a lab-scale sequencing batch reactor (SBR) fed with municipal wastewater was operated under anaerobic-aerobic, anaerobic-anoxic-aerobic and anaerobic-anoxic conditions. The results of PCR-DGGE targeting the 16S rRNA gene indicated a significant shift in the microbial community with electron acceptor conditions. From the 16S rRNA-based PCA, the microbial shift implies that little oxygen supply caused the deterioration of aerobic bacteria, including aerobic polyphosphate-accumulating organisms (PAOs). Moreover, it also reflects the existence of nitrate-utilizing denitrifiers. On the other hand, although the band patterns of DGGE targeting a functional gene of denitrification (nirS) also showed the microbial shift, the result of PCA differed from that of 16S rRNA-based analysis. There is no conclusive proof that the bacteria represented as the dominant bands detected in the present study are denitrifying-PAOs so far, it should be worthwhile to identify the detected bacteria and to examine their traits as new denitrifying-PAO candidates
Beschreibung:Date Completed 05.12.2006
Date Revised 17.09.2019
published: Print
Citation Status MEDLINE
ISSN:0273-1223