From sample similarity to ensemble similarity : probabilistic distance measures in reproducing kernel Hilbert space

This paper addresses the problem of characterizing ensemble similarity from sample similarity in a principled manner. Using reproducing kernel as a characterization of sample similarity, we suggest a probabilistic distance measure in the reproducing kernel Hilbert space (RKHS) as the ensemble simila...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 6 vom: 06. Juni, Seite 917-29
1. Verfasser: Zhou, Shaohua Kevin (VerfasserIn)
Weitere Verfasser: Chellappa, Rama
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM163035903
003 DE-627
005 20250207084039.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0544.xml 
035 |a (DE-627)NLM163035903 
035 |a (NLM)16724586 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Shaohua Kevin  |e verfasserin  |4 aut 
245 1 0 |a From sample similarity to ensemble similarity  |b probabilistic distance measures in reproducing kernel Hilbert space 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.06.2006 
500 |a Date Revised 26.05.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper addresses the problem of characterizing ensemble similarity from sample similarity in a principled manner. Using reproducing kernel as a characterization of sample similarity, we suggest a probabilistic distance measure in the reproducing kernel Hilbert space (RKHS) as the ensemble similarity. Assuming normality in the RKHS, we derive analytic expressions for probabilistic distance measures that are commonly used in many applications, such as Chernoff distance (or the Bhattacharyya distance as its special case), Kullback-Leibler divergence, etc. Since the reproducing kernel implicitly embeds a nonlinear mapping, our approach presents a new way to study these distances whose feasibility and efficiency is demonstrated using experiments with synthetic and real examples. Further, we extend the ensemble similarity to the reproducing kernel for ensemble and study the ensemble similarity for more general data representations 
650 4 |a Journal Article 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 6 vom: 06. Juni, Seite 917-29  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:28  |g year:2006  |g number:6  |g day:06  |g month:06  |g pages:917-29 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 6  |b 06  |c 06  |h 917-29