Bayesian wavelet-based image deconvolution : a GEM algorithm exploiting a class of heavy-tailed priors

Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) co...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 4 vom: 27. Apr., Seite 937-51
Auteur principal: Bioucas-Dias, José M (Auteur)
Format: Article
Langue:English
Publié: 2006
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Evaluation Study Journal Article Research Support, Non-U.S. Gov't