Bayesian wavelet-based image deconvolution : a GEM algorithm exploiting a class of heavy-tailed priors

Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 4 vom: 27. Apr., Seite 937-51
1. Verfasser: Bioucas-Dias, José M (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM161674828
003 DE-627
005 20250207054147.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0539.xml 
035 |a (DE-627)NLM161674828 
035 |a (NLM)16579380 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bioucas-Dias, José M  |e verfasserin  |4 aut 
245 1 0 |a Bayesian wavelet-based image deconvolution  |b a GEM algorithm exploiting a class of heavy-tailed priors 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.05.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Image deconvolution is formulated in the wavelet domain under the Bayesian framework. The well-known sparsity of the wavelet coefficients of real-world images is modeled by heavy-tailed priors belonging to the Gaussian scale mixture (GSM) class; i.e., priors given by a linear (finite of infinite) combination of Gaussian densities. This class includes, among others, the generalized Gaussian, the Jeffreys, and the Gaussian mixture priors. Necessary and sufficient conditions are stated under which the prior induced by a thresholding/shrinking denoising rule is a GSM. This result is then used to show that the prior induced by the "nonnegative garrote" thresholding/shrinking rule, herein termed the garrote prior, is a GSM. To compute the maximum a posteriori estimate, we propose a new generalized expectation maximization (GEM) algorithm, where the missing variables are the scale factors of the GSM densities. The maximization step of the underlying expectation maximization algorithm is replaced with a linear stationary second-order iterative method. The result is a GEM algorithm of O(N log N) computational complexity. In a series of benchmark tests, the proposed approach outperforms or performs similarly to state-of-the art methods, demanding comparable (in some cases, much less) computational complexity 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 4 vom: 27. Apr., Seite 937-51  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:4  |g day:27  |g month:04  |g pages:937-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 4  |b 27  |c 04  |h 937-51