Shape representation and recognition through morphological curvature scale spaces

A multiscale, morphological method for the purpose of shape-based object recognition is presented. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built, using the curvature function as the underlying one-dimensional signal. Each pe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 2 vom: 30. Feb., Seite 331-41
1. Verfasser: Jalba, Andrei C (VerfasserIn)
Weitere Verfasser: Wilkinson, Michael H F, Roerdink, Jos B T M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM160730317
003 DE-627
005 20231223090709.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0536.xml 
035 |a (DE-627)NLM160730317 
035 |a (NLM)16479803 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jalba, Andrei C  |e verfasserin  |4 aut 
245 1 0 |a Shape representation and recognition through morphological curvature scale spaces 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 14.03.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A multiscale, morphological method for the purpose of shape-based object recognition is presented. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built, using the curvature function as the underlying one-dimensional signal. Each peak and valley of the curvature is extracted and described by its maximum and average heights and by its extent and represents an entry in the top or bottom hat-transform scale spaces. We demonstrate object recognition based on hat-transform scale spaces for three large data sets, a set of diatom contours, the set of silhouettes from the MPEG-7 database and the set of two-dimensional views of three-dimensional objects from the COIL-20 database. Our approach outperforms other methods for which comparative results exist 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
700 1 |a Roerdink, Jos B T M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 2 vom: 30. Feb., Seite 331-41  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:2  |g day:30  |g month:02  |g pages:331-41 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 2  |b 30  |c 02  |h 331-41