Shape representation and recognition through morphological curvature scale spaces
A multiscale, morphological method for the purpose of shape-based object recognition is presented. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built, using the curvature function as the underlying one-dimensional signal. Each pe...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 2 vom: 30. Feb., Seite 331-41 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Evaluation Study Journal Article |
Zusammenfassung: | A multiscale, morphological method for the purpose of shape-based object recognition is presented. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built, using the curvature function as the underlying one-dimensional signal. Each peak and valley of the curvature is extracted and described by its maximum and average heights and by its extent and represents an entry in the top or bottom hat-transform scale spaces. We demonstrate object recognition based on hat-transform scale spaces for three large data sets, a set of diatom contours, the set of silhouettes from the MPEG-7 database and the set of two-dimensional views of three-dimensional objects from the COIL-20 database. Our approach outperforms other methods for which comparative results exist |
---|---|
Beschreibung: | Date Completed 14.03.2006 Date Revised 10.12.2019 published: Print Citation Status MEDLINE |
ISSN: | 1941-0042 |