Robust and fast learning for fuzzy cerebellar model articulation controllers

In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 36(2006), 1 vom: 15. Feb., Seite 203-8
1. Verfasser: Su, Shun-Feng (VerfasserIn)
Weitere Verfasser: Lee, Zne-Jung, Wang, Yan-Ping
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Evaluation Study Letter Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM160626803
003 DE-627
005 20250207025039.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0536.xml 
035 |a (DE-627)NLM160626803 
035 |a (NLM)16468579 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Shun-Feng  |e verfasserin  |4 aut 
245 1 0 |a Robust and fast learning for fuzzy cerebellar model articulation controllers 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.03.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC learning algorithms to provide the robust property against outliers existing in training data. An annealing schedule is also adopted for the learning constant to fulfill robust learning. In the study, we also extend our previous work of adopting the credit assignment idea into CMAC learning to provide fast learning for fuzzy CMAC. From demonstrated examples, it is clearly evident that the proposed algorithm indeed has faster and more robust learning. In our study, we then employ the proposed CMAC for an online learning control scheme used in the literature. In the implementation, we also propose to use a tuning parameter instead of a fixed constant to achieve both online learning and fine-tuning effects. The simulation results indeed show the effectiveness of the proposed approaches 
650 4 |a Evaluation Study 
650 4 |a Letter 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lee, Zne-Jung  |e verfasserin  |4 aut 
700 1 |a Wang, Yan-Ping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 36(2006), 1 vom: 15. Feb., Seite 203-8  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:36  |g year:2006  |g number:1  |g day:15  |g month:02  |g pages:203-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2006  |e 1  |b 15  |c 02  |h 203-8