Robust and fast learning for fuzzy cerebellar model articulation controllers

In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 36(2006), 1 vom: 15. Feb., Seite 203-8
1. Verfasser: Su, Shun-Feng (VerfasserIn)
Weitere Verfasser: Lee, Zne-Jung, Wang, Yan-Ping
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Evaluation Study Letter Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC learning algorithms to provide the robust property against outliers existing in training data. An annealing schedule is also adopted for the learning constant to fulfill robust learning. In the study, we also extend our previous work of adopting the credit assignment idea into CMAC learning to provide fast learning for fuzzy CMAC. From demonstrated examples, it is clearly evident that the proposed algorithm indeed has faster and more robust learning. In our study, we then employ the proposed CMAC for an online learning control scheme used in the literature. In the implementation, we also propose to use a tuning parameter instead of a fixed constant to achieve both online learning and fine-tuning effects. The simulation results indeed show the effectiveness of the proposed approaches
Beschreibung:Date Completed 07.03.2006
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1083-4419