Well-defined nanoparticles formed by hydrophobic assembly of a short and polydisperse random terpolymer, amphipol A8-35

Amphipols are short amphilic polymers designed for applications in membrane biochemistry and biophysics and used, in particular, to stabilize membrane proteins in aqueous solutions. Amphipol A8-35 was obtained by modification of a short-chain parent polymer (poly(acrylic acid); PAA) with octyl- and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 3 vom: 31. Jan., Seite 1281-90
1. Verfasser: Gohon, Yann (VerfasserIn)
Weitere Verfasser: Giusti, Fabrice, Prata, Carla, Charvolin, Delphine, Timmins, Peter, Ebel, Christine, Tribet, Christophe, Popot, Jean-Luc
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Polymers
Beschreibung
Zusammenfassung:Amphipols are short amphilic polymers designed for applications in membrane biochemistry and biophysics and used, in particular, to stabilize membrane proteins in aqueous solutions. Amphipol A8-35 was obtained by modification of a short-chain parent polymer (poly(acrylic acid); PAA) with octyl- and isopropylamine, to yield an amphiphilic product with an average molar mass of 9-10 kg x mol(-1) (sodium salt form) and a polydispersity index of 2.0 to 3.1, depending on the source of PAA. The behavior of A8-35 in aqueous buffers was studied by size exclusion chromatography, static and dynamic light scattering, equilibrium and sedimentation velocity analytical ultracentrifugation, and small angle neutron scattering. Despite the variable length of the chains and the random distribution of hydrophobic groups along them, A8-35 self-organizes into well-defined assemblies. The data are best compatible with most of the polymer forming compact assemblies (particles) with a molar mass of approximately 40 kg x mol(-1), a radius of gyration of approximately 2.4 nm, and a Stokes radius of approximately 3.15 nm. Each particle contains, on average, four A8-35 macromolecules and 75-80 octyl chains. Neutron scattering reveals a sharp interface between the particles and water. A minor (approximately 0.1%) mass fraction of the material forms much larger aggregates, whose proportion may increase under certain conditions of preparation or handling, such as low pH. They can be removed by gel filtration
Beschreibung:Date Completed 01.05.2007
Date Revised 24.01.2006
published: Print
Citation Status MEDLINE
ISSN:1520-5827