Poly(ethylene glycol)--oligolactates with monodisperse hydrophobic blocks : preparation, characterization, and behavior in water

Methoxypoly(ethylene glycol)-b-oligo-L-lactate (mPEG-b-OLA) diblock oligomers with monodisperse OLA blocks were obtained by fractionation of polydisperse block oligomers using preparative HPLC. The fractionated oligomers were composed of an mPEG block with a molecular weight of 350, 550, or 750 and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 24 vom: 22. Nov., Seite 11446-54
1. Verfasser: Carstens, Myrra G (VerfasserIn)
Weitere Verfasser: van Nostrum, Cornelus F, Ramzi, Aissa, Meeldijk, Johannes D, Verrijk, Ruud, de Leede, Leo L, Crommelin, Daan J A, Hennink, Wim E
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Methoxypoly(ethylene glycol)-b-oligo-L-lactate (mPEG-b-OLA) diblock oligomers with monodisperse OLA blocks were obtained by fractionation of polydisperse block oligomers using preparative HPLC. The fractionated oligomers were composed of an mPEG block with a molecular weight of 350, 550, or 750 and an OLA block with a degree of polymerization of 4, 6, 8, or 10. The diblock oligomers with a low PEG content were fully amorphous, with glass transition temperatures ranging from -60 to -20 degrees C, indicating that the blocks were miscible. Upon heating aqueous dispersions of the block oligomers, cloud points, depending on the PEG/OLA ratio of the block oligomer, were observed at temperatures above 40 degrees C. The monodispersity of the hydrophobic block enabled the amphiphilic molecules to form nanoparticles in water with a hydrodynamic radius of 130-300 nm, at concentrations above the critical aggregation concentration (0.4-1 mg/mL), whereas polydisperse mPEG-b-OLAs gave formation of large aggregates. Static light scattering measurements showed that the nanoparticles have a low density (0.6-25 mg/mL), indicating that the particles are highly hydrated. In agreement herewith, the (1)H NMR spectra of nanoparticles in D2O closely resembled spectra in a good solvent for both blocks (CDCl3). It is therefore suggested that the nanoparticles contain a hydrated core of mPEG-b-OLA block oligomers, stabilized by a thin outer PEG layer. The particles were stable for two weeks, except for the mPEG350 series and mPEG750-b-OLA4, indicating that both the PEG block size and the PEG weight fraction of the oligomers determine their stability. The evident self-emulsifying properties of mPEG-b-oligo-l-lactates with monodisperse hydrophobic blocks as demonstrated in this study, together with their expected biocompatibility and biodegradability, make these systems well suitable for pharmaceutical applications
Beschreibung:Date Completed 05.04.2007
Date Revised 15.11.2005
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827