A perforin/granzyme-positive MDS-derived T cell line, K2-MDS, induces apoptosis in CD34+ cells through the fractalkine-CX3CR1 system
Fractalkine (CX3CL1) and its receptor CX3CR1 play an important role in natural killer (NK) cell- and cytotoxic T cell-mediated endothelium damage. Here we describe the cytotoxicity of myelodysplastic syndrome (MDS)-derived T cell line, K2-MDS, through the fractalkine-CX3CR1 system. K2-MDS cells indu...
Veröffentlicht in: | Clinical immunology (Orlando, Fla.). - 1999. - 113(2004), 1 vom: 15. Okt., Seite 109-16 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Clinical immunology (Orlando, Fla.) |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antigens, CD34 CX3C Chemokine Receptor 1 CX3CL1 protein, human CX3CR1 protein, human Chemokine CX3CL1 Chemokines, CX3C Membrane Proteins Receptors, Chemokine |
Zusammenfassung: | Fractalkine (CX3CL1) and its receptor CX3CR1 play an important role in natural killer (NK) cell- and cytotoxic T cell-mediated endothelium damage. Here we describe the cytotoxicity of myelodysplastic syndrome (MDS)-derived T cell line, K2-MDS, through the fractalkine-CX3CR1 system. K2-MDS cells induced apoptosis against CD34(+) cells from normal bone marrow (BM) in a direct cell contact manner. K2-MDS cells expressed perforin and granzyme B, but they lacked Fas ligand expression. A specific inhibitor for perforin, concanamycin A, blocked K2-MDS-dependent cytotoxicity. Furthermore, a CX3C-chemokine, fractalkine, was expressed in CD34(+) cells, and its receptor, CX3CR1, was expressed on K2-MDS cells. The neutralizing monoclonal antibody (MoAb) for fractalkine and soluble fractalkine significantly inhibited K2-MDS-dependent cytotoxicity. K2-MDS cells also induced the cytotoxicity against human umbilical cord endothelial cells (HUVECs) expressing fractalkine. These data indicate that K2-MDS may be a perforin-granzyme-positive T cell line that exerts a cytotoxic effect on CD34(+) cells mediated through the fractalkine-CX3CR1 system |
---|---|
Beschreibung: | Date Completed 26.10.2004 Date Revised 16.11.2017 published: Print Citation Status MEDLINE |
ISSN: | 1521-6616 |