An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems

In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Becaus...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 1 vom: 13. Feb., Seite 334-45
1. Verfasser: Wang, Wei-Yen (VerfasserIn)
Weitere Verfasser: Cheng, Chih-Yuan, Leu, Yih-Guang
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM150443587
003 DE-627
005 20250205201209.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0502.xml 
035 |a (DE-627)NLM150443587 
035 |a (NLM)15369076 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wei-Yen  |e verfasserin  |4 aut 
245 1 3 |a An online GA-based output-feedback direct adaptive fuzzy-neural controller for uncertain nonlinear systems 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 15.10.2004 
500 |a Date Revised 08.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a novel design of a GA-based output-feedback direct adaptive fuzzy-neural controller (GODAF controller) for uncertain nonlinear dynamical systems. The weighting factors of the direct adaptive fuzzy-neural controller can successfully be tuned online via a GA approach. Because of the capability of genetic algorithms (GAs) in directed random search for global optimization, one is used to evolutionarily obtain the optimal weighting factors for the fuzzy-neural network. Specifically, we use a reduced-form genetic algorithm (RGA) to adjust the weightings of the fuzzy-neural network. In RGA, a sequential-search -based crossover point (SSCP) method determines a suitable crossover point before a single gene crossover actually takes place so that the speed of searching for an optimal weighting vector of the fuzzy-neural network can be improved. A new fitness function for online tuning the weighting vector of the fuzzy-neural controller is established by the Lyapunov design approach. A supervisory controller is incorporated into the GODAF controller to guarantee the stability of the closed-loop nonlinear system. Examples of nonlinear systems controlled by the GODAF controller are demonstrated to illustrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Cheng, Chih-Yuan  |e verfasserin  |4 aut 
700 1 |a Leu, Yih-Guang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 34(2004), 1 vom: 13. Feb., Seite 334-45  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:34  |g year:2004  |g number:1  |g day:13  |g month:02  |g pages:334-45 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2004  |e 1  |b 13  |c 02  |h 334-45