|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM150025785 |
003 |
DE-627 |
005 |
20231223052956.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0500.xml
|
035 |
|
|
|a (DE-627)NLM150025785
|
035 |
|
|
|a (NLM)15323500
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fleming, Gary J
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.03.2006
|
500 |
|
|
|a Date Revised 24.11.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The reaction of DL-Proline on O2-annealed (stoichiometric) and O-defected (sub-stoichiometric) TiO2 (001) single-crystal surfaces has been investigated. This is of significance in trying to understand the concept of how biomolecules interact with the surfaces of biomedical implants (molecular recognition). On an O2-annealed TiO2 surface, proline is found to largely adsorb then desorb intact at approximately 350 K. DFT (B3LYP) calculations of proline bound to a Ti(OH)4 cluster suggest a binding through the carboxylate functional group rather than through the NH group of the ring. In contrast, proline reaction was considerably different on the O-defected surface. First, proline was further stabilized, evidenced by a shift of its desorption temperature (during temperature-programmed desorption) to approximately 530 K. Along with proline desorption, two distinctive sets of reaction processes occurred at 530 and 630 K, respectively. The first pathway (alpha) at 530 K shows desorption of large amounts of m/e 55 (attributed to 1-azetine) and m/e 42 (attributed to ketene). At still higher temperature, 630 K, a pathway (beta) dominated by the appearance of low masses, mainly m/e 28, 27, and 26, is seen. These masses are tentatively attributed to desorption of HCN, ethylene, and/or acetylene as they represent the logical further decomposition of the different fragments of proline
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Azetines
|2 NLM
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Ethylenes
|2 NLM
|
650 |
|
7 |
|a Ketones
|2 NLM
|
650 |
|
7 |
|a titanium dioxide
|2 NLM
|
650 |
|
7 |
|a 15FIX9V2JP
|2 NLM
|
650 |
|
7 |
|a Hydrogen Cyanide
|2 NLM
|
650 |
|
7 |
|a 2WTB3V159F
|2 NLM
|
650 |
|
7 |
|a ethylene
|2 NLM
|
650 |
|
7 |
|a 91GW059KN7
|2 NLM
|
650 |
|
7 |
|a Proline
|2 NLM
|
650 |
|
7 |
|a 9DLQ4CIU6V
|2 NLM
|
650 |
|
7 |
|a Titanium
|2 NLM
|
650 |
|
7 |
|a D1JT611TNE
|2 NLM
|
650 |
|
7 |
|a ketene
|2 NLM
|
650 |
|
7 |
|a LEP3SM032A
|2 NLM
|
650 |
|
7 |
|a Acetylene
|2 NLM
|
650 |
|
7 |
|a OC7TV75O83
|2 NLM
|
650 |
|
7 |
|a titanium hydroxide
|2 NLM
|
650 |
|
7 |
|a W9EOP89V8G
|2 NLM
|
700 |
1 |
|
|a Idriss, Hicham
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 20(2004), 18 vom: 31. Aug., Seite 7540-6
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2004
|g number:18
|g day:31
|g month:08
|g pages:7540-6
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2004
|e 18
|b 31
|c 08
|h 7540-6
|