Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces

The reaction of DL-Proline on O2-annealed (stoichiometric) and O-defected (sub-stoichiometric) TiO2 (001) single-crystal surfaces has been investigated. This is of significance in trying to understand the concept of how biomolecules interact with the surfaces of biomedical implants (molecular recogn...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 18 vom: 31. Aug., Seite 7540-6
1. Verfasser: Fleming, Gary J (VerfasserIn)
Weitere Verfasser: Idriss, Hicham
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Azetines Biocompatible Materials Ethylenes Ketones titanium dioxide 15FIX9V2JP Hydrogen Cyanide 2WTB3V159F ethylene mehr... 91GW059KN7 Proline 9DLQ4CIU6V Titanium D1JT611TNE ketene LEP3SM032A Acetylene OC7TV75O83 titanium hydroxide W9EOP89V8G
Beschreibung
Zusammenfassung:The reaction of DL-Proline on O2-annealed (stoichiometric) and O-defected (sub-stoichiometric) TiO2 (001) single-crystal surfaces has been investigated. This is of significance in trying to understand the concept of how biomolecules interact with the surfaces of biomedical implants (molecular recognition). On an O2-annealed TiO2 surface, proline is found to largely adsorb then desorb intact at approximately 350 K. DFT (B3LYP) calculations of proline bound to a Ti(OH)4 cluster suggest a binding through the carboxylate functional group rather than through the NH group of the ring. In contrast, proline reaction was considerably different on the O-defected surface. First, proline was further stabilized, evidenced by a shift of its desorption temperature (during temperature-programmed desorption) to approximately 530 K. Along with proline desorption, two distinctive sets of reaction processes occurred at 530 and 630 K, respectively. The first pathway (alpha) at 530 K shows desorption of large amounts of m/e 55 (attributed to 1-azetine) and m/e 42 (attributed to ketene). At still higher temperature, 630 K, a pathway (beta) dominated by the appearance of low masses, mainly m/e 28, 27, and 26, is seen. These masses are tentatively attributed to desorption of HCN, ethylene, and/or acetylene as they represent the logical further decomposition of the different fragments of proline
Beschreibung:Date Completed 10.03.2006
Date Revised 24.11.2016
published: Print
Citation Status MEDLINE
ISSN:1520-5827