CHARMM fluctuating charge force field for proteins : I parameterization and application to bulk organic liquid simulations

Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 1-15, 2004

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 25(2004), 1 vom: 15. Jan., Seite 1-15
1. Verfasser: Patel, Sandeep (VerfasserIn)
Weitere Verfasser: Brooks, Charles L 3rd
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, U.S. Gov't, P.H.S. Organic Chemicals Proteins
LEADER 01000naa a22002652 4500
001 NLM143519425
003 DE-627
005 20231223031054.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0479.xml 
035 |a (DE-627)NLM143519425 
035 |a (NLM)14634989 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Patel, Sandeep  |e verfasserin  |4 aut 
245 1 0 |a CHARMM fluctuating charge force field for proteins  |b I parameterization and application to bulk organic liquid simulations 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.04.2004 
500 |a Date Revised 14.11.2007 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 25: 1-15, 2004 
520 |a A first-generation fluctuating charge (FQ) force field to be ultimately applied for protein simulations is presented. The electrostatic model parameters, the atomic hardnesses, and electronegativities, are parameterized by fitting to DFT-based charge responses of small molecules perturbed by a dipolar probe mimicking a water dipole. The nonbonded parameters for atoms based on the CHARMM atom-typing scheme are determined via simultaneously optimizing vacuum water-solute geometries and energies (for a set of small organic molecules) and condensed phase properties (densities and vaporization enthalpies) for pure bulk liquids. Vacuum solute-water geometries, specifically hydrogen bond distances, are fit to 0.19 A r.m.s. error, while dimerization energies are fit to 0.98 kcal/mol r.m.s. error. Properties of the liquids studied include bulk liquid structure and polarization. The FQ model does indeed show a condensed phase effect in the shifting of molecular dipole moments to higher values relative to the gas phase. The FQ liquids also appear to be more strongly associated, in the case of hydrogen bonding liquids, due to the enhanced dipolar interactions as evidenced by shifts toward lower energies in pair energy distributions. We present results from a short simulation of NMA in bulk TIP4P-FQ water as a step towards simulating solvated peptide/protein systems. As expected, there is a nontrivial dipole moment enhancement of the NMA (although the quantitative accuracy is difficult to assess). Furthermore, the distribution of dipole moments of water molecules in the vicinity of the solutes is shifted towards larger values by 0.1-0.2 Debye in keeping with previously reported work 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, P.H.S. 
650 7 |a Organic Chemicals  |2 NLM 
650 7 |a Proteins  |2 NLM 
700 1 |a Brooks, Charles L  |c 3rd  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 25(2004), 1 vom: 15. Jan., Seite 1-15  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:25  |g year:2004  |g number:1  |g day:15  |g month:01  |g pages:1-15 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2004  |e 1  |b 15  |c 01  |h 1-15