Dispersive properties of finite, one-dimensional photonic band gap structures : applications to nonlinear quadratic interactions

We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We introduce the concept of a complex effective index for structures of finite length, derived from a generalized dispersion equation that identically satisfies the Kramers-Kronig relations. We then a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 4 Pt B vom: 30. Okt., Seite 4891-8
1. Verfasser: Centini, M (VerfasserIn)
Weitere Verfasser: Sibilia, C, Scalora, M, D'Aguanno, G, Bertolotti, M, Bloemer, M J, Bowden, C M, Nefedov, I
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM118494929
003 DE-627
005 20250203055224.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0395.xml 
035 |a (DE-627)NLM118494929 
035 |a (NLM)11970354 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Centini, M  |e verfasserin  |4 aut 
245 1 0 |a Dispersive properties of finite, one-dimensional photonic band gap structures  |b applications to nonlinear quadratic interactions 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 16.07.2002 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We introduce the concept of a complex effective index for structures of finite length, derived from a generalized dispersion equation that identically satisfies the Kramers-Kronig relations. We then address the conditions necessary for optimal, phase-matched, resonant second harmonic generation. The combination of enhanced density of modes, field localization, and exact phase matching near the band edge conspire to yield conversion efficiencies orders of magnitude higher than quasi-phase-matched structures of similar lengths. We also discuss an unusual and interesting effect: counterpropagating waves can simultaneously travel with different phase velocities, pointing to the existence of two dispersion relations for structures of finite length 
650 4 |a Journal Article 
700 1 |a Sibilia, C  |e verfasserin  |4 aut 
700 1 |a Scalora, M  |e verfasserin  |4 aut 
700 1 |a D'Aguanno, G  |e verfasserin  |4 aut 
700 1 |a Bertolotti, M  |e verfasserin  |4 aut 
700 1 |a Bloemer, M J  |e verfasserin  |4 aut 
700 1 |a Bowden, C M  |e verfasserin  |4 aut 
700 1 |a Nefedov, I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 60(1999), 4 Pt B vom: 30. Okt., Seite 4891-8  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:60  |g year:1999  |g number:4 Pt B  |g day:30  |g month:10  |g pages:4891-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 1999  |e 4 Pt B  |b 30  |c 10  |h 4891-8