Dispersive properties of finite, one-dimensional photonic band gap structures : applications to nonlinear quadratic interactions

We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We introduce the concept of a complex effective index for structures of finite length, derived from a generalized dispersion equation that identically satisfies the Kramers-Kronig relations. We then a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 60(1999), 4 Pt B vom: 30. Okt., Seite 4891-8
1. Verfasser: Centini, M (VerfasserIn)
Weitere Verfasser: Sibilia, C, Scalora, M, D'Aguanno, G, Bertolotti, M, Bloemer, M J, Bowden, C M, Nefedov, I
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We discuss the linear dispersive properties of finite one-dimensional photonic band-gap structures. We introduce the concept of a complex effective index for structures of finite length, derived from a generalized dispersion equation that identically satisfies the Kramers-Kronig relations. We then address the conditions necessary for optimal, phase-matched, resonant second harmonic generation. The combination of enhanced density of modes, field localization, and exact phase matching near the band edge conspire to yield conversion efficiencies orders of magnitude higher than quasi-phase-matched structures of similar lengths. We also discuss an unusual and interesting effect: counterpropagating waves can simultaneously travel with different phase velocities, pointing to the existence of two dispersion relations for structures of finite length
Beschreibung:Date Completed 16.07.2002
Date Revised 28.07.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X